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A first-order perturbation approach to k = 0 Friedmann cosmologies filled with 
dust and radiation is developed. Adopting the coordinate gauge comoving with 
the perturbed matter, and neglecting the vorticity of the radiation, a pair of coupled 
equations is obtained for the trace h of the metric perturbations and for the 
velocity potential v. A power series solution with upward cutoff exists such that 
the leading terms for large values of the dimensionless time ~ agree with the 
relatively growing terms of the dust solution of Sachs and Wolfe. 

1. I N T R O D U C T I O N  

The classic prediction for the temperature fluctuations of  the cosmic 
background radiation by Sachs and Wolfe (1967) overestimates the experi- 
mental value (Mather et aL, 1992) by at least two orders of  magnitude. Worse 
than that, this prediction has been obtained by neglecting the temperature 
fluctuations on the surface of the last scattering, and including only the 
gravitational perturbations along the subsequent path of  the photon. Obvi- 
ously, if  the initial fluctuations are random, their inclusion can only increase 
the effect. While these computations can be criticized on the basis that the 
results are not invariant with respect to the choice of the initial hypersurface 
where the photons originate (Stoeger, 1991), this is not likely to be the way 
of  improving the results. Meanwhile, the discovery of  large-scale structures 
(such as voids or walls) certainly did not bring us closer to the solution of 
this cosmic puzzle. It is ha rd to  take seriously the suggestion (Mather et al., 
1992) that the observed fluctuations are primordial (as opposed to propagation 
effects), unless we are able to reduce the magnitude of the Sachs-Wolfe 
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estimate accordingly. The way the surface of photon emission is defined is 
just one detail of the gauge choice. As we seek diminution of the effect, we 
may as well stick to the comoving gauge. For gauge-invariant treatments, 
see Magueijo (1993), Russ et al. (1993), Kodama and Sasaki (1987), Dunsby 
(1991), and Mukhanov et al. (1992). 

Sachs and Wolfe obtained, in a closed form, the first-order perturbations 
of a Friedmann universe with a flat 3-space and filled either with dust or 
radiation. They assumed that the domain of the universe in which the photon 
travels is matter dominated, and computed the temperature fluctuations in 
the dust-filled universe. Their assumption is justifiable because the decoupling 
occurs near the time of equal matter and radiation densities. [Some authors 
estimate that the two phenomena occur simultaneously (Weld, 1984), while 
others (Lyth and Stewart, 1990) take that the equal-density epoch precedes 
the surface of last scattering.] According to the unperturbed models, the 
radiation density Pr dies out faster than the matter density On- However, due 
to the instabilities, the dust dominance may not hold everywhere in the 
perturbed models. 

Here we consider a refinement of the Sachs-Wolfe scheme by computing 
the perturbations of the k = 0 Friedmann universe in the presence of both 
dust and radiation. Instabilities are known to exist in two-fluid cosmologies 
(Mukhanov et al., 1992). Assuming, for instance, that the observed large 
structures are lately emerging manifestations of the instabilities, one might 
be able to reduce the magnitude of the metric fluctuations affecting the photon 
orbits. The energy-momentum tensor is a sum of those of the two media, 

T~, = T ~  + Trab (1) 

The contribution of the dust has the form 

For the radiation, 

T~b = --pmUaUb (2) 

4 1 
T~ab = --~ p,U~Ub + ~ p~6~ (3) 

The four-velocities are normalized, UaUa = 1. We adopt the conformal form 
of the metric 

gab = a2('q)('qab + hab) (4) 

where the unperturbed (hab = 0) metric satisfies (Misner et aL, 1973) 

1 / / [da\2 pm~176 Pr~176 
3 -~ \a.q] a a2 - 0 (5) 

such that the density Pi, where i stands either for m (matter) or r (radiation), 
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equals Pro0 or prO at some prescribed conformal time "q = "q0. The solution 
has the form 

1 a = ~ h'q 2 - g~ 

where the constants are defined by 

1 
~. = ~ P m0a3' ~ = 

(6) 

[9rO 
a0 (7) 

Pro0 

2. T H E  P E R T U R B E D  M O D E L  

In the perturbed universe, hab ~ 0, the densities of  the components can 
be written to first order 

p~l) = p + ~Pi (8) 

Here Pr and Pm are the unperturbed densities 

a 3 a 4 

Pm('q) : Pro0 ~-~, Pr(~q) : PrO ~-~ (9) 

and BPi are the first-order density perturbations. The indices of  the perturbed 
quantities are lowered and raised by the Minkowski metric "qab = .qab. 

It Can be proven (J. Ehlers, personal communication, 1990) that a homo- 
geneous universe cannot develop perturbations with comoving dust and radia- 
tion. In fact, the dipole effect of  the cosmic background radiation provides 
an experimental value for the local relative velocity of  the order of  100 km/ 
sec. Thus we have good reason to assume that Bu / =/= Bu/. We then choose 
coordinates comoving with the matter: 

u a = u~ (10) 

u a = u~ + 3u~ (11) 

where the coincident unperturbed velocities are 

u~ = 1 ~ (12) 
a 

The normalization conditions imply that h00 = 0 and Bu ~ = ~u,o = 0. 
After the decoupling, we may assume that the conservation laws apply 

separately both to the matter and the radiation components: Tab;a = 0 and 
Tab,a = 0. Thus coupling occurs only via the universal gravitational interaction. 
We get two energy conservation equations from the timelike components and 
two momentum conservations laws from the spacelike components. 
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2.1. Energy Conservation 

The first-order perturbations of the dust satisfy the equation 

+ ~ h = 0 (13) 

where h = h~ is the trace of the spacelike perturbation of the metric and a 
prime denotes partial derivative with respect to the conformal time -q. The 
solution is 

= Pm e(x ) - h (14) 

where the integration function E(x ~) depends only on the space coordinates 
x" (et = 1, 2, or 3). 

For the radiation, the energy conservation law has the form 

(p3/4 F ~  ua), a = 0 (15) 

or 

3 ~Pr 1 )' 
-~  + ~ h + a(~u~),~, = O 

2.2. Momentum Conservation 

The conservation law for the dust has the form 

(ahoJ  = 0 

with the solution 

The remaining 
(White, 1973) 

(16) 

(17) 

h ~ = 0 (19) 
For radiation, the first-order momentum conservation law reads 

1 
(pl/4~Ur~)' = ~ aOr3/4~pr,  a (20) 

The perturbed Einstein tensor will be written 

Gab = oGab + ~G% (21) 

ah,~o = F,~(x ~) (18) 

coordinate freedom makes it possible to arrange 
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Here oGab is the  unperturbed and 8G~b the first-order part. The Einstein 
equations for the first-order quantifies are 

8G~ = -(SPr + 8Pm) (22) 

4 8G% = --~ apr~u~ (23) 

1 
8 G ~  = ~ 8 ~ p ~  (24) 

Substitution of the Sachs and Wolfe (1967) expressions for 8Gab and separat- 
ing the trace-free part of the metric perturbation 

1 
S ~  = h ~  - ~ -q~h  (25) 

yields 

S~ , r  A h - 2  h' 

( a  '2a z ~') 4 _ , ~ , '  _ 2 h,~, + AhO~ _ 4 2 h ~ . . . .  alr~U~ (27) 
3 3 

2h" + 4 a '  h'  - S~,~v - 2 Ah = -2a28pr (28) 
a 3 

a '  2 
S ~  " + 2 - -  S ~  ' - AS~ = S ~ , ~  + Sl~, ~ - ~ ~ S ~  ~ 

a 

+ h~~ ' + h13o, '~' + 2 a '  ,m ,~ (h , ~ + h ~ o , )  a 

1 1 
3 h ' ~  - 9 8~Ah (29) 

Taking the sum of (26) and (28), we get the simple relation 

a '  
h" + - -  h' = -a2(2~p~ + ~Pm) (30) 

a 

= -2a2(3Pr + ~Om) (26) 

3. THE VELOCITY POTENTIAL 

For economy of writing, we introduce the scaled radiation velocity 
perturbation 

vc,(x~, "q) = p1/48u,~ (31) 
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(Note that the component v0 = 0.) From the -q derivative of (16) and eliminat- 
ing the term a2(Su~) by use of the radiation momentum conservation (20), 
we get the relation 

1/4 f 3  8p._z + 1 ) ' ] '  1 
Pr a~-~ Pr ~ h + -~ apr3/4(~pr)'a,a = 0 (32) 

Taking the time derivative and the gradient, and using again (20) to get rid 
of the divergence term, the left-hand side is still a total time derivative. 
Integration and comparison with (32) leads to the uncoupled equation 

v~'~,~ - v~,~ = Q~(x) (33) 

where the integration function Q~(x) depends only on space coordinates. We 
decompose the three-vector v~ 

v,~ = o~ + v,~ (34) 

where the vorticity co~ is divergenceless 

o~, ~ = 0 (35) 

and v is the velocity potential. The terms containing the velocity potential v 
cancel in equation (33). Thus we get the simple relation for the vorticity 

Atoa = -Q~(x) (36) 

Following a suggestion of Liddle and Lyth (1993), we shall henceforth take 
the trivial solution oJ~ = 0 and Q~ = 0 such that we have 

v~ = v,~ (37) 

Using the velocity potential in equation (20), we get 

apr314 ~pr, a (38) v r 
,or 

This can be integrated. Since only the gradient of the velocity potential has 
physical meaning, the integration function U('q) may be chosen to vanish. 
Thus 

v'  1 ---- -~ apr3/4~pr (39) 

Hence, equation (16) can be rewritten 

1 
3v" - Av + ~ o~4aoh ' = 0 (40) 
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Introducing the velocity potential (39) in (30), we get 

h" + --a h' + Pro0 --a E(x)  -- -~ h + 8ap3r/4V ' = 0 (41) 

We may get rid of the inhomogeneous term E(x)  by introducing the function 

f = h - 2E(x) (42) 

The explicit form of the scale factor a can be made simpler by use of the 
dimensionless time variable 

Then we have 

1 /~k~ 1/2 
(43) 

such that the Big Bang occurs at ~ = 1. Equations (40) and (41) take the form 

16 .  
- L A v  + --~ f = O 

1 
(~2 _ 1 ) f +  2 ~ -  6 f +  K ~ - - ~ _  1 r = 0 

(45) 

(46) 

where an overdot denotes derivative with respect to the dimensionless time 
and the constants K and L are defined by 

K = 16,r 3/4 (47) 

Pro 1 
L = 4 p20 a2 (48) 

These coupled linear equations for f and v have an elaborate structure, 
even in the asymptotic regime. In the special case of the velocity potential 
being stationary, ~ = 0, (46) becomes the n = 2 Legendre equation for f In 
the generic case, however, the expansion in Legendre series is cumbersome. 

Pro 
a = ~(~2 _ 1), t~ = a0 (44) 

Pro0 
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4. R E C U R S I O N  RELATIONS 

The power series expansion in the time variable 6, 

f(x,  6) = ~ an(X)~ n (49) 
t l =  - -o~  

v(x, 6) = ~ b,,(x)~ n (50) 
11= - -~o  

with equations (45) and (46), yields the recursion relations for the coefficients: 

16 
(n + 1)(n + 2)bn+2 - LAbn + -~  (n + 1)an+l = 0 (51) 

(n + 1)(n - 4)an-2 - (2n 2 - 6)an 

+ (n + 1)(n + 2)an+2 + K(n + 1)b,+l = 0 (52) 

Eliminating an, we get 

(n + 1)(n - 1)(n - 4)bn-1 - (n + 1)(2n 2 + 10)bn+l 

L 
+ (n + 1)(n + 2)(n + 3)bn+3 - -  (n + 1)(n - 4)Abn_3 

n - 2  

2n a - 6 
+ L ~ Abn-i - L(n + 1)Abn+ l = 0 (53) 

n 

The convergence of the series expansion deserves further investigation. 
The terms with negative exponents will decay with time, and it is expected 
that their contribution to the temperature fluctuations becomes negligible. 
Hence, to evade fast-growing terms, it appears worthwhile to seek solutions 
with a maximal value of the exponent n. 

It is clear from the structure of equations (51) and (52) that a cutoff of  
the power series can occur only simultaneously in a~ and b~. Further necessary 
conditions for cutoff may be obtained from (53). The highest possible nonvan- 
ishing coefficient is bl. From (51) it then follows that a2 is the highest 
coefficient o f f .  It is impossible to have a cutoff simultaneously both upward 
and downward. Our choice of the velocity potential implies that any coeffi- 
cient b n satisfying Abn = 0 must vanish. Thus the leading terms of the solution 
of equations (51) and (51) are 

h(x, 6) = aa(x)~ 2 + 2E - -~ a2(x) + a-2(x) -~ 

1 1 1 
+ a-3(x) ~"~ + ~ a - z ( X )  - ~  + " "  (54) 
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~3 1 1.'(X, 6) : bl(X)~ -{'- b-3(x) '1- b-4(x) ~ + "'" (55) 

where the coefficients an and bn satisfy the relations 

1 32 
ao(x) = - 3  a2, Abl(X) = ~-~ a2(x) 

K 8 
a-z(x)  = -~ bl(X), Ab-3(x) = ~ bl 

a-2(x) 48 
a-4(x) -- T ' mb-4(x) = ~-~ a-3(x) 

The leading terms in the density contrasts are 

( 1 1 ) 
~P_._s -- 4p~l/4affl bl(x) - 3b-3(x) ~ - 4b-4(x ) ~-~ + "'" (56) 

( 1 , ) 
~Pmpm -- 21 a2(x)~ 2 q- ao(x) + a - z ( x ) - ~  + a-3(x) ~- ~ q- "'" (57) 

Thus we establish the comforting result that for large values of 6, 
the leading power in time of the metric function h coincides with the 
power of the relatively growing mode of the pure dust solution (Sachs 
and Wolfe, 1967). For a more detailed account of our approach, see 
Komfirik (1994). 
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